Pixabay
New Research Offers Cheaper Alternative To Silicone Solar Cells

A more attractive type of solar cell could make the renewable energy far more efficient than it has ever been. While there have been reports of California generating too much solar energy, just imagine if solar panels could convert more of the sun they collect into usable electricity. Perovskite cells, which is a hybrid form of photovoltaic cells, are an alternative to silicon that are cheaper to produce and could end being much more efficient on a regular basis.

South Korea’s Ulsan National Institute of Science and Technology (UNIST) was able to set a new record of 22.1 percent efficiency with a stabilized, small perovskite solar cell. This level of efficiency was reached last year, but that wasn’t on a regular basis

The team also achieved 19.7 percent efficient with cells measuring at one square meter. The prior record for a stabilized perovskite solar cell was set at 21.2 percent by a collaborative effort between UNIST and the Korea Institute of Chemical Technology (KRICT).

Sang-Il Seok, UNIST’s Professor of Energy and Chemical Engineering, told PV Magazine that they were able to detect flaws in the materials used in these solar cells to boost the efficiency percentage: “The key to manufacturing high-performance solar cells is to reduce defects in materials that generate energy loss when converting sunlight to electricity. Our study presents a new method that suppresses the formation of deep-level defects, thereby setting a new record efficiency for perovskite solar cells.”

Perovskite has been rivaling their more common crystalline silicon technology since last year and it continues to improve at a rapid pace. Just eight years ago, the material was only producing electricity at less than four percent. It continues to take over the solar industry by not only strong efficiency ratings, but by how it’s manufactured.

Traditional silicon cells take multiple steps to create. They need to be created in high temperatures and squeaky-clean facilities. By comparison, perovskite takes very little time to create and can be done in a normal lab environment. It’s sprayed onto the surface, which also gives it the ability to be flexible if needed. 

Another advantage is keeping its high performance level even after many hours of light exposure. In April, UNIST and KRICT reported that it had a 93 percent performance rating after spending 1,000 hours in the sun.

At the moment, perovskite is still in its testing period and won’t be seen on rooftops or large solar arrays yet. Further studies, such as the ability to add layers of perovskite to make them even more efficient, are being done. Assuming the UNIST can translate larger-scale cells, the future is very bright with these efficiency ratings considering most silicon solar cells that are seen commercially can only reach around 25 percent on a stable basis.

NewsKenya's 'Snow Leopard' Olympic Skier Is Using Her Platform To Save The Earth

Sabrina Simader, Kenya’s first Olympic alpine skier, is the UN Environment’s Mountain Hero. She will also work with the United Nations on the Wild for Life campaign, which aims to end the illegal wildlife trade.  

6 days ago
News60,000 Chinese Soldiers Are Going To Plant Trees To Fight Pollution

China is on a mission to cover more than 30,000 miles of land mass with trees, and they're devoting military resources to the project.

6 days ago
NewsAustralia's Capacity For Solar Energy May Double By 2019

Queensland and New South Wales  are seeing record amounts of rooftop installations and solar farms being created. The sudden increase is likely due to the country's recent hot temperatures.

6 days ago
NewsThis Solar-Powered Sidewalk Can Charge Electric Cars

Platio has developed a solar sidewalk in Hungary and has implemented the new technology in various places over the past year. The latest installation comes paired with an electric vehicle charging station at a local real estate developer.

7 days ago
Stay Green
Sign up for our daily newsletter
Quantcast